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Kinetics of recombination processes 

H Rauht and A M Stoneham 
Theoretical Physics Division, AERE Hamell, Oxfordshire, U K  

Received 22 March 1984 

Abstract. In order to solve nonlinear kinetic equations for recombination reactions when 
the production of participating species is driven externally at a time-dependent rate, we 
establish a framework based on the correspondence between these equations and a 
Schrodinger-type equation in which the product of the recombination constant with the 
production rate plays the role of the potential. The required solutions of the kinetic 
equations can therefore be obtained by solving the equivalent Schrodinger-type equation 
directly, or by identifying an appropriately chosen time-dependent function as a particular 
integral of this equation and deducing the production rate subsequently. Both methods 
are illustrated by various examples covering production rates with periodic as well as 
aperiodic time dependences. The approach is seen to reveal a variety of solutions which 
can be exploited to assist identification of the mechanisms operating and to aid extraction 
of rate constants in conjunction with the experiment. 

1. Introduction 

The formalisms developed widely to describe chemical kinetics (see, e.g., Kehlen et 
a1 1974) have often a much broader validity. This is especially true of rate-equation 
approaches to sequences of reactions among species. Reactions of the sort 

A B = A + B  (1.1) 

have features in common when A and B are atomic species reacting in the gas or liquid 
phase, when they are electronic carriers (electrons or holes, including polarons and 
solvated forms), or when they are solid-state defects, either intrinsic or extrinsic. 
Experiments to determine rate constants, and hence analyse the underlying mechan- 
isms, usually contain two complications. The first arises from a driving term: one 
might apply an external field (irradiation by light, for instance) to dissociate the species 
AB at a rate P( t )  for times t 3 0: 

The second complication is due to the fact that the differential equations describing 
how the populations involved vary with time may be nonlinear, as in the case of 
bimolecular recombination of mobile species A and B: 

R 

A + B +  AB (1.3) 
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with an appropriate reaction constant R.  This complication leads to three difficulties. 
Firstly, even if the reaction and the concentrations of species AB, A and B can all be 
monitored fairly precisely, it may still be hard to obtain accurate rate constants for 
mathematical and numerical reasons, e.g. near degeneracies of time constants. 
Secondly, the fit of the proposed rate equations may not yield unique values of rates, 
i.e. there may be several possible fits of comparable accuracy. Thirdly, since the 
experimental system may not be ideally defined, it may not be obvious how to vary 
the external field in order to optimise the approach. 

In this paper therefore we look at general features of the kinetics of recombination 
processes typified by the reactions (1 .1)  when the production of species is driven at a 
rate P ( t ) .  We shall show that there exist certain broad classes of solutions of the 
affiliated rate equations and that, in principle, these solutions can be exploited to 
improve analysis to give rate constants. Thus, if the production rate (which is under 
experimental control) is chosen with a suitable time dependence, one may optimise 
the response (e.g. photoconductivity (Mort and Pai 1976), or luminescence intensity 
(Curie 1963) versus time for reactions of electrons and holes) so as to aid extraction 
of rate constants. One significant point hereby concerns what constitutes a useful 
solution. Clearly analytic expressions for the instantaneous concentrations and re- 
combination rate are always desirable. Under some circumstances more restricted 
results can be profitable. Thus, if for a periodic production rate the time scale of the 
fluctuations implied is small compared with the response time of the phenomenon 
being observed in the experiment, a description of the average concentrations and 
average recombination rate may be adequate. Hence, whilst emphasising the fully 
soluble cases, we shall quote results for averages too. 

Chemical rate equations themselves involve certain approximations (see, e.g., 
Stoneham 1975) though few limitations concern the examples we discuss. The most 
critical approximation in the present analysis is probably the implied spatial 
homogeneity, so that a single production rate and a single recombination constant (or 
group of constants) apply. Clearly there are exceptions to the assumed uniformity. 
These might occur because the intensity of exciting radiation is attenuated as it 
penetrates deeper into the sample, or because nearby surfaces may offer extra recombi- 
nation processes. For present purposes, we shall ignore this complication since, in 
some practical situations, a more restricted assumption of local homogeneity may 
suffice in any case. 

2. General formalism 

The basic rate equations considered here include three main types of terms which add 
to dC,/dt, the rate of change of concentration C, of species a = A, B. Firstly, there 
is the production term P (  1 ) .  For the reaction (1.2) the rates of production of species 
A and B are equal; clearly simple generalisations to more complex reactions exist. 
Secondly, there is a nonlinear recombination term RCACB due to reaction (1.3). 
However, we should not forget that species a can be generatFd by thermal excitation, 
even in the absence of external interference. Therefore, if C, denotes the respective 
thermal equilibrium concentrations (assumed to be independe9t of C, ), the full 
expression for the recombination rate becomes L = R (  CACB - eACB), which accounts 
for exact balance of the thermal production with recombination in equilibrium (cf 
Madelung 1981). We are hence led to the important class of coupled rate equations 
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defined by 

d C, / d t = P( t ) - R( CACB - for t z O  ( a  =A,  B) (2.1) 

together with initial values for t = 0: 

C,(O) = eo 3 0  ( a  =A,  B). (2.2) 

Equations (2.1) subject to (2.2) obviously imply the conservation relation 
. . A  

C A (  f )  - c B (  f )  = C A -  C B .  (2.3) 

This allows us to represent them in the Riccati form 

d C , / d t = P ( t ) - R ( C i  + ~ , C , - & A ~ B )  ( a  = A ,  B) (2.4) 

&= P A ,  & =  P A - e B  (2.5) 

with the quantities 

introduced to abbreviate notation. When reactions (1.2) and (1.3) are the only ones 
involved, 6, = 0 for a = A, B, and thus the linear term in (2.4) disappears. This applies, 
e.g., to carriers in perfectly pure intrinsic semiconductors, or ideally pure and perfect 
metals with displacement damage only. Yet, traps can alter the symmetry of A and 
B, so that dm # 0 for a = A, B. Then, thirdly, (2.4) retains a linear term which generalises 
the basic equations whilst leaving an important class rigorously soluble. 

We realise that the transformation 

C,( t )  = R- ' (d /d t )  loglZ( t) l  -+de ( a  =A,  B) (2.6) 

relates the solution C,( f )  of the nonlinear first-order differential equations (2.4) to an 
appropriate solution, Z( t ), of th'e linear second-order differential equation 

d 2 Z / d t 2  - [ S 2  + RP( t ) ]Z  = 0, 

s = R (  CA -t e ~ ) / 2 .  

(2.7) 

(2.8) 

in which 

Although we are concerned with an initial value problem rather than an eigenvalue 
problem, we note formal parallels of (2.7) with the stationary Schrodinger equation 
for a particle in a one-dimensional potential, understanding that t here represents the 
space variable. Thus, Z( t )  corresponds to the wavefunction, -S2 to the (negative) 
particle energy, and R P ( t )  to the (non-negative) potential. The preceding steps reveal 
that, having established a value of S, one can exploit the whole class of (unstable) 
solutions of the Schrodinger-type equation (2.7) known for given forms of P ( t )  to 
yield solutions C,(t) of the original problem set up in equations (2.1) and (2.2). 
Conversely, starting from equation (2.7), one can obtain additional solutions of the 
rate equations under consideration by choosing Z( t )  appropriately, which then deter- 
mines P( t ) .  In quantum mechanical terms, this corresponds to choosing a wavefunction 
and deducing the potential, i.e. the opposite of the usual method of solution. Both 
ways will be described and adopted in what follows. 

2.1. Solution with production rate given 

Here we choose a production rate P( t )  and derive concentrations C, ( t ) .  When P (  t )  
is specified, equation (2.7) can be solved, in principle at least, to yield two linearly 
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independent particular integrals, Z,( t )  and Z,( t ) .  Employing these in the transforma- 
tion (2.6), and observing the conditions (2.2), leads to the following representation for 
the desired solution of equations (2.1): 

C , ( t ) =  R-l(d/dt)  loglZ(t)l-fo, for t z O  (a = A ,  B) (2.9) 

with Z(t) given by 

Z(t) = k,Z2(t) - k2Z,(t) (2.10) 

and constants k ,  and k2 (apart from an unimportant non-zero factor) themselves given 
by 

kt = Zi (O){[(d/ d t 1 logIzi( t ) I1 1 =o  - SI ( i  = 1,2). (2.1 1 )  

From (2.9) the recombination rate can be calculated to yield 

for t > O  
1 
R 

L( t )  = -{ [(d/dt)  loglZ( t)l]' - S 2 }  (2.12) 

using (2.5) and (2.8). 

2.2. Solution with production rate to be deduced 

We show next how, by choosing concentrations C,(t)  in effect, we can obtain the 
production rate P ( t ) .  To do this, let us consider a function Z,(t) defined for times 
t 2 0, and with continuous first derivative. This function is inserted into equation (2.7), 
and hence it constitutes another function, namely 

P ( t )  = R - ' [ ( Z , ( t ) ) - '  d2Z,/dt2-S2]  for t 2 0. (2.13) 

If, as a sufficient condition, the left-hand side of (2.13) turns out to be independent 
of R, bounded, and non-negative, thus satisfying the differential inequality 

(Z,( t ) ) - '  d 2 Z , / d t 2 z  S 2  for t z 0, (2.14) 

then P ( t )  from (2.13) may serve to model a production rate in equations (2.7) and 
(2.1). Since P ( t )  is now known explicitly, we can identify Z,(r) as a first particular 
integral of the differential equation (2.7) and, by exploiting the Wronskian relationship, 
obtain a second linearly independent particular integral Z,( t )  according to (Arfken 
1970) 

(2.15) 

In special cases we may be able to obtain Z,( t )  more directly from Z,( t )  by consideration 
of symmetry and linear independence, without making recourse to (2.15) explicitly. 
The subsequent calculation of the concentrations and of the recombination rate is 
straightforward, using (2.9) and (2.12). 

This approach complements that of P 2.1, as it requires satisfying the conditions 
associated with (2.13) to deduce P( t ) ,  rather than solving the differential equation 
(2.7) for given P( t ) .  It is particularly useful for constructing simple solutions of the 
rate equations (2.1). Thus, if Z,(t) is chosen such that 

[ (dldt)  loglZi(t)Ilt=o= S (2.16) 
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holds, this function already determines completely the concentrations from 

C a ( t )  = R-'(d/dt)  l o g ~ Z ~ ( t ) ~ - ~ ~ a  ( a  = A ,  B )  (2.17) 

and the recombination rate from 

1 
R 

L( t )  = -{[( d/d t )  10g/Z, ( t )  I]' - S 2 } .  (2.18) 

2.3. Solution and averages for periodic production rate 

An important subclass is formed by solutions of the rate equations (2.1) with periodic 
time-dependence of P ( t ) .  In this case (2.7) specifies a Hill equation (Meixner 1956). 
We may hence suppose that the relation 

P(  t + 7,) = P( t )  for t s O  (2.19) 

applies, where 7, is the cycle length?. Then, according to Floquet's theorem, there 
exist linearly independent particular integrals Z , (  t )  and Z2( t )  of (2.7) with the property 

(2.20) 

The quantity A denotes the affiliated characteristic exponent which depends on S 2  and 
R as well as on the parameters which characterise P( t ) .  Since S 2  3 0 from (2.8) with 
(2.2) and since P ( t ) > O  (excluding the trivial case of zero identity) from (2.13) with 
(2.14), A appears real and may be assumed positive without loss of generality. The 
statement (2.20) is equivalent to the ansatz 

Z,( t + 7,) = e-"cZ,( t ) ,  z,( t + 7,) = e"'CZz(t). 

Z , ( t )  =e-A 'u l ( t ) ,  Z,( t )  = eh'u2( t )  

with periodic functions U,( t )  and u2( t )  satisfying 

(2.21) 

U,(t+TC) = U,([) for t s O  ( i  = 1 ,2 ) .  (2.22) 

Again, by substituting the particular integrals (2.21) into (2.9) and (2.12), both the 
concentrations and the recombination rate are obtained. This reveals that the charac- 
teristic exponent plays the role of an inverse time constant for the establishment of 
steady state. Thus, if t >> 1/A, we may simply use the steady-state limiting forms 

Cz( t )=  R-'[(dldt)  loglu2(t)l + A ] - i &  ( a  = A ,  B) (2.23) 
and 

L"( t )=  R-'{[(d/dt) loglu,(t)l +A12-S2} (2.24) 

to describe concentrations and recombination rate. 
In addition to these results, averages over a cycle, defined like 

(2.25) 

merit further attention. The average concentrations are readily calculated from (2.6) 
to give 

(C , ( t ) )=  (R7, ) - '  log/Z(t+.Tc)/Z(t)l-fG, (a =A,  B) (2.26) 

i The restriction to the semi-infinite interval of positive times is irrelevant for the conclusions which follow. 
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by referring to (2.20) and (2.21) upon recalling (2.10). Similarly, the average recombina- 
tion rate comes from (2.1) and (2.6): 

(2.27) 

with the constant 

Po=(P(t)). (2.28) 

In the limit of large times, expressions (2.26) and (2.27) yield the steady-state average 
values 

(C:( t ) )  = A J  R --$Go (a = A ,  B) (2.29) 

and 

(L"(f)) = P" (2.30) 

to provide the constant components of the fluctuations of both the concentrations and 
the recombination rate, equations (2.23) and (2.24). This follows immediately by use 
of the representation (2.21). 

3. Illustrative examples 

Hereafter we give some examples which demonstrate the usefulness of the theoretical 
framework we have outlined for obtaining analytic solutions of the rate equations with 
both types of approach, and we shall cover periodic as well as aperiodic time- 
dependences of the production term. For brevity, only the relevant steps and final 
results will be quoted. 

We start with the first method of solution, in which we specify a production rate 
P( t )  and derive the appropriate concentrations and the recombination rate. 

( i )  Production rate as periodic rectangular pulses 
Consider P( t )  with the repeatedly stepped form ( n  = 0, 1,2, . . .) 

for nT, =s t < nr, + T ~ ;  P,,, > Pmin 3 0, 
f o r n ~ , + ~ p ~ f < ( n + l ) ~ c ;  T , > T ~ > O .  (3.1) (".. P (  t )  = 

Pmin 

The maxima have height P,,,,,, and duration T ~ ;  the minima are of height Pmin, and 
the cycle length is T ~ .  Let the initial values of the concentrations 6o 3 0 for a = A, B 
(both not zero), so that S > O .  Here (2.7) with (3.1) constitutes Meissner's equation 
(Strutt 1967) which, in the degenerate case of infinitely high and short 'on-off' pulses, 
reduces formally to the Kronig-Penney (1931) model for an electron in a one- 
dimensional (semi-infinite) lattice. Defining rate constants p and v by 

(3.2) 

we seek the characteristic exponent A in the ansatz (2.21) for the particular integrals 
of equation (2.7) suitable for (3.1). Following the appendix, we find that A is determined 
by the relation 

CL = (sz+ RF,,,,,)~/~, v = ( S 2  + RPmin) 
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The appropriate concentrations are ( n  = 0, 1,2, . . .I 

(3.4) 

and the recombination rate is obtained ( n  = 0, 1,2, . . .) 

for nr, s t < nr, + rp ,  
for nrc+ ~~s t < ( n  + l ) ~ , .  (3.5) 

R - l [ p 2 f i a x ( t ) -  S21 { R-' [V2f ; , , ( f ) -S2]  
L( t )  = 

In these equations 

f max 

min 9 

( t )  = (A("IePt +B(") e-Pr)/('(") ePl - B(") 
(3.6) f , ( [ )  = (c'") +D(n) e - u f ) / ( ~ ( n l  - D ( n )  e - u r )  

with the various coefficients A'"', @ " I ,  C'" ) ,  D'"' depending on n, T,, rpr p, v, A and 
S. In steady state achieved at large times, t >> 1 / A ,  or, equivalently, after many cycles, 
n >> l/Ar,, expressions (3.4) and (3 .5)  simplify to 

K f z a x  ( t ) - i O m  

F E i n ( t ) - i d a  

f o r n r , C f < n r , + T p  

for nr, + r p  G t < ( n  + l)r, 
(a = A ,  B) ,  (3.7) 

for nr, c t < nr, + rp, 
for  nr, + T ~ C  t < ( n  + l)rc,  

I: c:( t )  = 

and 

(3.8) 
R - ' [ p 2 ( f z a x ( t ) ) 2 -  S21 { R - ' [ V ' ( f m " i n ( t ) ) *  - S21 

L"( t )  = 

where 

1, ) / ( b 2  eP(r-nTc) + e - P ' l - n T c )  
f" max ( t )  = ( b ,  eW(f-"Tc)- a2 e-p'r-nTc) 

), 

with constants a,, b2, c2,  d, depending on r,, rpr p,, v and A. 

(ii) Continuous production rate 
Whilst a constant obviously represents a simple function in its own right, it is instructive 
to consider it as a special limit o f  the periodic rectangular pulses of example (i). We 
let Pmax and Pmin therefore both take the same value, say the average Po, thus 

(3.9) 
f:in( t )  = ( d ,  e''t-nTc) - c2 e - v ( f - n r c )  ) / ( d 2  e v ( f - n T c )  + c 2  e - v ( r - n T c )  

P( t )  = Po t 3 O ;  Po> 0 (3.10) 

and assume again C, 2 0 for a = A, B (both not zero), so that S > 0. The two rate 
constants defined in (3.2) are then identical and, from (3 .3) ,  equal the characteristic 
exponent which now simply reads 

A = (S2+RPo)1 '2 .  (3.1 1 )  

A 

Hence, the concentrations (3.4) become 

Cm(t) = (A/Rl f ( t )  -+Om for t 3 0  ( a  = A ,  B) (3.12) 
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and the recombination rate (3.5) becomes 

L( t )  = R - I [ A ~ ~ ~ (  t )  - s2] for t 3 0, (3.13) 

where 

f ( t )  = ( A  e" + B e-A')/(A e*'- B e-'!) (3.14) 

with constants given by 

A = S + A ,  B = S - A .  

From (3.12) and (3.13) the steady-state limits 

(3.15) 

c: = A / R - f da ( a = A , B )  (3.16) 

and 

L"= Po (3.17) 

are easily verified in agreement with the previous example. 

(iii) Production rate as a single rectangular pulse 
This situation too can be considered as a special case of example (i)! where the 
minimum production rate has Pmin = 0 and is indefinitely prolonged. We shall proceed 
directly, however, and assume 

(3.18) 

again ea 3 0 for a = A, B (both not zero), so that S > 0. Equation (2.7) is easily solved 
with (3.18) for the two time intervals. Following 0 2.1, and matching the logarithmic 
derivative of the appropriate solution Z( t )  in the first interval at t = T~ smoothly to 
the respective solution in the second interval, we find, with the definition (3.2), that 
the concentrations have the form 

x L a x ( t )  - $60 forOS t < T p  

( a  =A,  B) (3.19) 
x f m i n (  1 )  -+de for Tp<  t <CO 1; C,(t) = 

extending the result of Capellos and Bielski (1972) which was confined to the case 
S = 0. The recombination rate is given by 

f o r O s t < T p ,  
(3.20) 

The forms of the auxiliary functions are as in (3.6), but now the actual coefficients have 
the values 

R - ' [ p 2 f i a x ( t )  - S21 
R - ' [  v2fHin( t )  - S 2 ]  for T p S  t <a. 

L ( t )  = 

A = S + p ,  B = S - p ,  

(3.21) 

Expressions (3.19) and (3.20) yield the steady-state limits for the c ncentrations 

C 2 =  ea (a =A, B) (3.22) 
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and the recombination rate 

L" = 0, (3.23) 

as expected. 
Figure 1 illustrates forms of the production rate and the relaxation curves derived 

for the corresponding concentrations and the recombination rate of examples (i), (ii) 
and (iii) using the specific set of values for the parameters involved defined in the 
caption. 

Production ra te  

IL 
I Concentrations 

- 
Lm 1 Recombination rate 

0 2 4 6 8 10 
t (IO+S) 

Figure 1. Production rate, concentrations, and recombination rate as functions of time for 
examples (i) periodic pulses (full lines), (ii) continuous excitation (broken lines), and (iii) 
a single pulse (dotted lines). Values chosen for the parameters are P,,, = lo2' m-3 s-I, 
P,,, = 0, T~ = s, corresponding to Po = 2.5 x lo2' m-3 s-' ; further- 
more R = lo-'' m3 s-' and C, = 5 x 10l6 m-3 for a = A, B. 

s and T~ =,2.5 X 

We now turn to the second method of solution, in which we postulate a particular 
integral Z,( t )  of equation (2.7) and deduce the corresponding production rate. 

(iv) Expotentially decaying production rate 
Suppose C, = 0 for CY =A,  B, i.e. S = 0, and try 

(3.24) 

with I,, a modified Bessel function of the first kind and order zero. From the standard 
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recurrence relation this ansatz is seen to satisfy (2.14) and, by reference to (2.13), it 
generates the function 

~ ( t )  = P,,, e-‘/7> --0 for t z O  (3.25) 

which, being independent of R and bounded, is acceptable for modelling a production 
rate. With the form (3.24), relation (2.15) clearly allows 

z,( t )  5 K,( y e-‘/’‘) for t s O  (3.26) 

as a further linearly independent particular integral, where KO denotes a modified 
Bessel function of the second kind and order zero. Using (3.24) and (3.26) in (2.9) 
and (2.12), we obtain concentrations 

C a ( t )  = ( Y / 2 R T ) d t )  for t 2 0  ( a  =A,  B) (3.27) 

and recombination rate 

L( t )  = (y2/4R.r2)g2( t )  for 1 2 0  (3.28) 

with 

A t )  = { [ I , (  Y ) K , (  Y e-‘/2T) - K , (  Y)z,( Y e-f’2T)I/[~l(  Y ) K ~ Y  

+ K,(Y)Z,(  y e-‘/2r. (3.29) 

Both vanish in steady state achieved at large times. 

(U) Production rate of squared Lorentzian type 
Assume again ea = O  for a =A,  B, i.e. S = O ,  and consider the ansatz 

~ , ( r )  = cos[6 tan-’( t /~)]( t ’  + T ~ ) ’ / ~  for t 2 0; 

6 = (1 - RP,,,, ,T~)’”, P m a x  ’ 0, T > O ,  
(3.30) 

which satisfies the requirement (2.14), thus ensuring that 

(3.31) 

deduced from (2.13) is independent of R and bounded. The form (3.30), as a particular 
integral of equation (2.7), apparently fulfils (2.16). Thus both the concentrations and 
the recombination rate are derived immediately using (2.17) and (2.18) to give 

C a ( t ) =  R - ’ h ( t )  for t > O  (a = A ,  B) (3.32) 

and 

L ( t )  = R - ’ h 2 ( t )  for t z 0, 

where 

h ( t )  = { t  - ST tan[b tan-’( t/7)]}/(t2 + T ~ ) .  

(3.33) 

(3.34) 

As for the previous example, these quantities vanish in steady state. 
Figure 2 illustrates the production rate together with the relaxation curves for the 

concentrations and the recombination rate of examples (iv) and (v) subject to the 
particular values for the various parameters defined in the caption. 



Kinetics of recombination processes 3309 

Production rate ' /\, 

0 1- 

Concentrations 

0 2 4 6 8 10 
t (IO+ SI 

Figure 2. Production rate, concentrations, and recombination rate as functions of time for 
examples (iv) exponentially decaying production rate (full lines) and (v)  production rate 
of squared Lorentzian type (broken lines). Values chosen for t!e parameters are Pmax = 

and T = s ;  furthermore R = IO- ' '  m3 sC'  and C, = 0 for (Y = A ,  B.  1021 m-3 s-l 

4. Discussion 

We have studied methods of solving kinetic equations for recombination reactions, in 
which the production of participating species is driven externally at a time-dependent 
rate. Although the present analysis refers to reactions among two mobile species, it 
naturally applies as well to other reactions which can be described by nonlinear rate 
equations of the Riccati form adopted in P 2. This is true for certain one-species 
recombination reactions in photoconductivity, e.g. when the holes are entirely trapped 
and a fraction of the electrons nominally in the conduction band are trapped at any 
instant, so that electrons alone need to be regarded as mobile reacting species (cf Kittel 
1976). The corresponding situation, when both species are mobile, has been considered 
recently in radiation damage for a constant production rate using perturbation series 
expansions (Rauh and Simon 1981). 

Under some circumstances a theoretical treatment of bimolecular recombination 
reactions can be facilitated by linearising the basic rate equations with respect to the 
actual concentrations. However, the full nonlinear analysis becomes indispensable 
when the concentrations deviate substantially from their initial equilibrium values. 
This may happen for high species production rates or large times; it is commonly the 
case for temperatures which are low in relation to the relevant formation energies so 
that thermal species concentrations are negligible. 

The examples we have performed explicitly in 0 3 on the basis of the nonlinear 
rate equations under consideration represent, of course, merely a fraction of the cases 
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which are soluble. Other examples include, e.g., a production rate which is sinusoidally 
modulated about some constant value, or production rates decaying with various 
inverse power laws in time. The results of such calculations off er a variety of solutions 
which can be employed to assist identification of the mechanisms operating and to 
aid extraction of rate constants. This might be done by choosing specific forms of the 
external field and then comparing the theoretical predictions with the dynamic response 
of the experimental system manifest in the concentrations and the recombination ratet. 
If, for instance, the experiment is photoexcitation and luminescence of carriers, one 
would measure the photocurrent and the luminescence intensity as functions of time 
(Rywkin 1965); in radiation damage different experiments (e.g. measurement of the 
electrical resistivity) monitor comparable quantities. The fact that analytic solutions 
are (or can be made) available for production rates with various time-dependences 
involving parameters subject to external control (e.g. P,,,, Pmi,, r, and rp in the case 
of example ( i )  in § 3) allows us hereby to try and select the form of the field which 
leads to an optimal response in the actual physical situation. One immediate advantage, 
in the light of the formulations of § 2.3, certainly exists for periodic excitations. Thus 
estimating the characteristic exponent, i.e. the time required to establish steady state, 
from the experiment and measuring the constant components (or averages) of the 
fluctuating concentrations in the ensuing steady-state regime (together with the differ- 
ence in thermal concentrations) readily provides a lower bound for the recombination 
constant. Remarkably, this conclusion is true for any periodic excitation and does not 
necessitate knowing the analytic form of the characteristic exponent at all. Such an 
approach appears therefore particularly helpful when explicit calculations of the 
characteristic exponent are difficult. 
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Appendix 

The form (3.1) of the production rate satisfies (2.19) so that the explanations of § 2.3 
concerning the solution of (2.7) apply. Substituting the ansatz (2.21) yields two 
equations with constant coefficients for the periodic functions stated in (2.22), which 
are readily solved to give representations ( n  = 0, 1,2, . . .) 

( '41)  

- ( A + p  r - nr ' )  + b, e - ( A - p ) ( f - n T c )  

(A21 c2 e e - ( A + v ) ( t - n i c )  + d ,  e - f A - Y ) ( r - n T L )  U*( t )  = 

respectively, using the definition (3.2). The pre-exponential constants can be obtained 
as follows. Since they are solutions of second-order differential equations, both the 

a ,  e ( A + w ) ( f - - n ~ c )  + b,  e ( A - P ) ( r - n r c )  for nr, S t < nr, + rp,  
for nr, + rp s t < ( n + l)r,, 

for nr, s t < nr, + T ~ ,  

for nr, + rp s t < ( n  + l ) rc ,  

U l ( f )  = { cl e ( A + u ) ( l - n r c )  + d ,  e ( A  - u ) ( l - n T c )  

t Methods for a systematic analysis of experimental relaxation curves are discussed in detail by Schmid 
and Sapunov (1982). 
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functions U,(?) and u 2 ( t )  from ( A l )  and (A2) and their first derivatives must be 
continuous at the knot points t = n7, + T ~ .  Moreover, the periodic nature of U,( t )  and 
u 2 ( t )  imposes the condition that the values of the solutions ( A l )  and (A2) as well as 
of their first derivatives at he start of each cycle t = n T ,  are equal to the respective 
values at the end of each cycle t = ( n  + 1 ) ~ ~ .  These requirements entail two sets of 
linear homogeneous equations for a,, b, ,  c,,  d ,  and a2, b2, c2, d2,  which allow non-trivial 
solutions only if the relation between the characteristic exponent A and the quantities 
p and v, 

is satisfied. The solutions themselves are determined (up to an arbitrary non-zero 
factor) to read 

a , = ( A  - v ) ( p  + ~ ) e ” ( ~ c - ~ p ) - ( A  +v)(p-v)e-”“c-‘p’-2v(A - p )  eATc-PTp, 

6 ,  = - ( A  + v ) ( p  + Y )  e-”(‘c-‘p) + ( A  - v ) ( p  - v )  e”(Tc-Tp) +2v(A + p )  eATC+”Tp, 
(A4) 

c , =  - ( A  + p ) ( p - ~ ) ~ ~ ” ‘ ~ ~ P ‘ ~ - ( A - p ) ( p + ~ ) e ~ Y T ~ ~ ” T ~ + 2 p ( A - v ) e ~ A ’ c ~ ” ‘  p, 

d l = ( A  + p ) ( p  + v )  e ” T ~ + P T ~ + ( A - p ) ( p - v ) e ” T ~ ’ . - P T ~ - 2 p ( A  + v )  e-ATc+uT P I  

and 

a , = ( h - ~ ) ( p + ~ ) e - ~ ( ~ c - ‘ p ) - ( A  + v ) ( p - v )  e”~‘~-‘P’-2v(A-p)ee-“~+’”‘p ,  

b2= - ( A  + ~ ) ( p + ~ ) e ~ ( ~ ~ - ~ ~ ) + ( A - ~ ) ( p - v ) e - ~ ( ~ ~ - ~ p ) + 2 ~ ( A  +p)e-ATc-PT p, 
c2=-(A + p ) ( p - v ) e y T ~ ~ c l T ~ - ( A - p ) ( ~ + v ) e y T ~ + P r ~ + 2 ~ ( A  -v)eAT;+”‘p, (A51 

d 2 = ( A  + p ) ( p + v ) e - u T c - P T p + ( A - p ) ( p -  v )  e-uTc+PTp-2p(A +v)eArc-YTp. 

Recalling (2.21) and making use of ( A l )  and (A2), the required particular integrals 
of equation (2.7) can be put as ( n  = 0, 1 ,2 , .  . .) 

(A61 
for nT,G t < n T , +  T ~ ,  

for m,+ TP 6 t < ( n  + 1 IT,, 
a,  e - ( A + P ) n T c  + b , e - ( A - ~ ) n T c  e - ~ f  
c l  e - ( A + v ) n r  , V r  + d ,  e-(A-L’)nTc e-”r Z,(f) = [ 

{ 
and 

Z2(t)  = 

in terms of the characteristic exponent and constants given by equations (A3)-(A5), 
respectively. The forms (A6) and (A7) lead to concentrations ( n  = 0, 1,2, .  . .) 

for n T ,  G t < nr,+ rP, a2 e ( A + ~ ) n T c  e-Pr + b, e ( A - P ) n 7 c  e ~ f  
c2 e ( A + u ) n r c  + d2 e(A-L’)nrc , V I  f o r n ~ , + ~ p ~ f < ( n + l ) T , ,  (A7) 
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and the average production rate is given by 
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From (A16) and (A17) the steady-state limits (2.29) and (2.30) are verified with the 
aid of (A1 1). 

It should be noted that a problem in radiation damage of metals which is related 
to our example (i)  has been analysed by Dienes (1978) and Krishan (1980), however 
without considering Floquet's theorem and its consequences and advantages for the 
solution of the underlying rate equations. 
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